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I. INTRODUCTION

1.0 Background

To date, succgssful satellite capture and recovery/repair
operations have been executed by Space Shuttle astronauts using the
Remote Manipulating Arm and the Manned Maneuvering Unit.l»2 However,
both of these valuable tools are very much range-limited. Furthermore,
attempts to capture uncontrolled satellites within the range of the
Orbiter can lead to the dangerous exposure of the Space Shuttle crew
members and/or the Orbiter to a possibly violently gyrating,
uncontrolled satellite. For both of these reasons most future capture
and recovery missions will likely be the domain of remotely piloted
Orbital Maneuvering Vehicles (OMVs).3»"

The potential usefulness of OMVs to affect the capture and
retrieval of satellites should be significantly increased by adaptable,
yet accurate, simulations of the target satellite's attitude motions.
Two primary mathematical models are needed for such simulation
capability. First, a long—term model is needed for predicting a
satellite's attitude motion as much as six months or more in advance.
Second, a "short—-term” model adaptable and rigorous enough for use in
simulators to train the OMV “pilots” for specific satellite recoveries,
is needed.

Although the problem of modeling a spacecraft's motion about its
center of mass is one which arose because of space flight, the study of

1



2
spacecraft attitude dynamics is basically a contemporary application of
classical theoretical mechanics. The analytical approach to solving the
differential equations of rotational motion of a satellite is typified
by Jacobi's classical solution for the free rotational motion of a
triaxial rigid body in terms of elliptic integrals and functions.
Although analytical solutions have been obtained for only relatively
simple models of satellites, the more recent wide availability of
digital computers has made it possible to use straightforward numerical
integration of differential equations of motion for models composed of

rigid and flexible bodies, subjected to various torques and forces.

1.1 The Capture and Retrieval Problem

A time period of several months may elapse between the failure of a
satellite (for example, a control system failure, power system failure,
maneuvering propellant depletion, or other non-catastrophic type
problems which might precipitate the need for capture and retrieval) and
the first possible opportunity, or "window,” to capture and retrieve it.
Hence, an apparently necessary capability is that of accurately
predicting the evolution of the attitude motion of a disabled satellite
several months into the future, for the purposes of capture feasibility
analyses and mission planning. In addition to long-term prediction
capability, short-term attitude motion simulation capability is needed
to train remote operators. Since all satellites which may be the
objects of capture and retrieval missions will most certainly not fit
into a single category of satellite or attitude motion, simulation
capability must include more than just a single-axis-of-rotation,

single-rigid-body model. The satellite model should be rigorous enough




3
to include the presence of spinning rotors or reaction wheels
distributed symmetrically, or asymmetrically. The flexibility
of the satellite might also be included.

Another problem involves the quantity and quality of data on the
states of the satellite's orbital and attitude motions. These, of
course, are functions of the satellite's "mode of failure."” There are
three general modes, or scenarios, of "failure" which may precipitate a
recovery. The first scenario involves a satellite which has not lost
its telemetry, but is uncontrollable. In this case, ground controllers
would, through the satellite's telemetry data, have at least partial
attitude motion information. The second scenario involves a satellite
which is both uncontrolled and has lost its telemetry capability. Such
a satellite's state was possibly known prior to failure, but additional
information can only be obtained through remote observation, if the
satellite is observable. The third scenario involves space debris which
are, of course, neither controllable nor capable of telemetry. Thus,
the debris' rotational states are unknown except for estimates based on
any observations which might have been possible. Therefore, in the
capture of debris, any of a wide variety of rotational states may be

encountered .’

1.2 Scope of This Investigation

| The primary purpose of this research is to provide mathematical
models which may be used in investigation of various aspects of the
remote capture and retrieval of uncontrolled satellites. Emphasis has
been placed on analytical models; however, té verify analytical

solutions, numerical integration must be used. ,Also, for satellites of



4

of certain types, numerical integration may be the only practical or
perhaps the only possible method of solution. First, to provide a basis
for analytical and numerical work, uncontrolled satellites were
categorized using criteria based on (1) orbital motions, (2) external
angular momenta, (3) internal angular momenta, (4) physical
characteristics and (5) the stability of their equilibrium states.
Chapter II deals specifically with categorization.

Second, several analytical solutions for the attitude motions of
satellite models were compiled, checked, corrected in some minor
respects and their short-—term prediction capabilities were investigated.
These models should be useful in studying the attitude behavior of

satellites which have considerable angular momentum, and in “"driving”

short—term simulation, during which human operators try to capture
satellites. Single-rigid-body, dual-spin and multi-rotor configurations
are treated. The models are described in Chapter III and Appendices A,
B and C of this report. Copies of computer codes for evaluating the
solutions are being supplied separately.

Third, as indicated above, to verify the ;nalytical models and to
see how the "true"” motion of a satellite which is acted upon by
environmental torques differs from its corresponding torque-free motion,
a numerical simulation code was developed. This che contains a
relatively general satellite model and models for gravity-gradient and
aerodynamic torques. The spacecraft physical model for the code and the
equations of motion are given in Chapter IV. The two environmental

torque models are described later in Chapter V and Appendix D. .
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Fourth, the use of torque-free analytical solutions to represent
satellite attitude motion is considered in Chapter VI. Analytical
results and numerical results, including gravity-gradient and
aerodynamic torque effects for satellites are presented.

Fifth, there are cases in which analyticél solutions are not known
for the unperturbed attitude motion of a satellite, but available
integrals of the motion and extensive numerical results indicate that
the motion will in a great many cases be almost periodic. To model the
motion in such cases, a semi-analytic method was developed. This method
is based on concepts from the Generalized Method of Averaging (GMA), but
its application is primarily numerical. The method is described in
Chapter VII. It has been used to predict satellite attitude motion over
long periods of time. Results obtained using the semi-analytic method
and direct numerical integration are presented.in Chapter VII.

Finally, Chapter VIII contains conclusiong and recommendations.

It should be noted here that this effort did not include an
investigation of the effects of internal dissipation of energy on
satellite motion. This was considered to be beyond the scope of this

effort.



II. CATEGORIZATION OF SATELLITES

2.0 Rationale

Artificial earth satellites can be categorized according to (1) the
orbital motion of their centers of mass, (2) their gross (external)
rotational motion, (3) their internal motion, (4) their individual
physical characteristics and (5) the stability of their equilibrium
states.> The motion of a satellite's center of mass about the earth is
of importance in determining whether the satellite may be reached with
the means available. If the satellite is accessible, the orbital
characteristics are needed in modeling the effects of environmental
torques. The initial rotational motion of the satellite about its
center of mass as well as its internal angular momentum determine the
satellite's initial rotational kinetic energy and total rotational
angular momentum. Using these and satellite physical data, one can
predict the general principal characteristics of the uncontrolled
attitude motion which may evolve. Examples of this uncontrolled
attitude motion include continuous, steady rotation and librating

motion.

2.1 Categories

+

The block diagram shown in Fig. 1 depicts categories of
uncontrolled satellites based upon orbital criteria.S The first two

categories, LEO (Low Earth Orbit) and HEQ (High Earth Orbit), are based



+893T1T938S pa[Toajuodun jo s3afIo8aje) jo weidejq NOOId

03

all AH0931VD

!

it AHO931VD

‘1 814

11840 voILdIT13 - 03
L1840 ¥V INJYID YVIN - OON

11840 H14v3 HI9IH - O3H
11840 HLYV3 MO0 - 031

i
|
[
|
|
1
_ 03 OIN
0N |
_ 81 AH093LVDI vl AHO093LVYD
¥il AH093LYD _
LNVNINOQ _ 1INVIIJINDIS
* S3NOHOL _ S3N0HOL
INTIAQVYHO-ALIAVHO | JINVNAQOY3Y
| | AH0931VD
_ X
|
|
S3L171131VS

0371704 LNOJNN




8
upon the perigee altitude of the satellite's orbit. A LEO is considered
one which has a perigee altitude of less than 600 km. For those periods
of time during which the satellite operates in the LEO altitude range,
it is subjected to significant aerodynamic torques as well as other
environmental torques. For that portion of the satellite's orbit in
which it moves in the HEO altitude range, aerodynamic torques become
much less significant than gravity-gradient torques.

The next two categories, NCO (Near Circular Orbit) and EQ (Elliptic
Orbit), determine the satellite's orbital motion with respect to
altitude and time. An elliptic orbit of significant eccentricity
subjects the satellite to substantial periodic changes in the
environmental torques which affect the satellite's attitude motion. On
the other hand, for a satellite moving in a ciréular, or near circular,
orbit, the magnitudes of the environmental torques to which it is
subjected remain in a narrow range.

Uncontrolled satellites also can be placed into several
subcategories based on their rotational motion about their respective
centers of mass. These subcategories includé High Kinetic Energy (HKE),
Low Kinetic Energy (LKE), High Angular Momentum.(HAM), and Low Angular
Momentum (LAM). The HKE satellites possess rotational kinetic energy
which is orders of magnitude larger than the maximum possible pofential
energy due to gravity-gradient torque acting upon the satellite. This
high kinetic energy state could be due to a high "gross” rate of
rotation; that is, a high rotational rate of the entire body, and/or due
to large amounts of internal angular momentum and internal rotational

kinetic energy. Satellites in the HAM subcategory possess rotational
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angular momentum, H, due either to gross or internal relative motion of
sufficient magnitude that the ratio of the magnitude of the applied
torque to the magnitude of H is small. Obviously, the subcategories HAM
and HKE are not mutually exclusive. In point of fact, they overlap a
great deal.

Other subcategories are defined to deal more specifically with the
inertia characteristics of the individual satellites. Two of these
subcategories include Asymmetric Inertia (AI) ellipsoid, and Symmetric
Inertia (SI) ellipsoid. Still other subcategories may be based upon the
initial orientation of the satellite's body-fixed axes with respect to
the radius vector between the center of the earth and the satellite's
center of mass. This orientation is of central importance in the
determination of the torque on the satellite which in turn are modeled
in stability analyses. The stability of its initial motion has a direct
bearing upon the later motion of a satellites under the effects of
aerodynamic and/or gravity-gradient torques. Those subcategories,
associated with aerodynamic torques include AS, ANS, AUS (Aerodynamical-~
ly Stable, Neutrally Stable, and Unstable initial states, respectively).
Similarly, for Gravity Gradient stability, we have the subcategories
GGS, GGNS, and GGUS.®> 1In all these the type of stability considered is
static stability rather than dynamic stability.

Finally, satellites can be categorized according to their construc~
tion and their components. Such categories relate directly to the
choice of the physical model and will approximate a satellite best.

Examples are dual-spin satellites and satellites which contain reaction

wheels for attitude control.




III. ANALYTICAL MODELS FOR TORQUE-FREE

~ ROTATIONAL MOTION OF SATELLITES

3.0 Introduction

The kinds of satellites to be considered in this investigation as
typical candidates for capture and retrieval include single-rigid-body
and dual-spin satellites as well as satellites which contain multiple
spinning rotors (reaction wheels). 1In this Chapter three torque-free
analytical models for these three types of satellites are discussed.
Such models serve at least three purposes. First, if its rotational
angular momentum is not too small, over short time periods such as that
required for capture, the actual attitude motion of a satellite is
essentially the same as 1its torque-free motion. Second, to predict
satellite motion over longer periods of time, perturbation theories for
satellite attitude motion,5”!0 analogous to those for satellite orbital
motion may be developed on the basis of analytical solutions for
torque-free motion. Third, analytical solutions provide a means for

checking the accuracy of numerical integration procedures.

3.1 Single-Rigid-Body Satellite Model

As the name implies, the single-rigid-body model consists of a
single, rigid, asymmetric body. Using this single-rigid-body model, and
general perturbation methods. Beletski,® Crenshaw and Fitzpatrick,6

Cochran,’ and Liu and Fitzpatrick,!0 have developed theories to predict

10
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Fig. 2. Single-Rigid-Body Satellite Model.
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the attitude motion in the presence of gravity-gradient torques. 1If
the satellite modeled (see Fig. 2) is rotating rapidly about its center
of mass, then its short-term motion is essentially classical "free-
Eulerian” motion. This "free-Eulerian” motion may be described by
an exact analytical solution which involves elliptic functions and
integrals.!1s»12 Appendix A contains the details of this mathematical

model.

3.2 Dual-Spin Satellite Model

Satellites which contain a single spinning rotor and a nominally
despun platform, or "carrier” body, are called "dual-spin" satellites
(see Fig. 3). More specifically, the dual-spin satellite can be modeled
as a system of two rigid bodies coupled together in such a manner that a
rotation about an axis fixed in both bodies is the only relative degree
of freedom. A general, exact analytical solution for the torque-free
attitude motion of an arbitrary dual-spin satellite does not exist.
However, Cochran, Shu and Rew,!3 building on previous work (Ref. 12,
page 37) have obtained a complete, exact, analytical solution for the
case in which: (1) one body 1s axisymmetric; (2) the axisymmetric body
rotates relative to the other about the former's axis of symmetry; (3)
the other body is asymmetric; (4) the axis about which relative rotation
occurs 1s the axis of major, or minor, moment of inertia of the asymmet-
ric body; (5) the relative rotation is either free (no internal torque),
or the relative spin rate is constant. A summary of the mathematical

model of Ref. 13 is presented in Appendix B for completeness.
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Dual-Spin Satellite Model.

Fig. 3.
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3.3 Multi-Rotor Satellite Model

An exact analytical solution is also available for the torque-free
attitude motion of a particular model of a satellite which contains
spinning rotors; i.e., "momentum wheels,” or “"reaction wheels.” In this
solution, also due to Cochran and Shu,!* the satellite physical model
(see Fig. 4) is that of a gyrostat, consisting of two axisymmetric,
constant-speed rotors, or momentum wheels, and a "carrier” rigid body
which has a mass distribution such that the centroidal inertia ellipsoid
of the system of rigid bodies is axisymmetric.!“ The model is general
enough to represent any axisymmetric satellite that contains an

arbitrary number of axisymmetric rotating components which together

produce a resultant relative, or "internal," angular momentum vector
that is not parallel to a principal axis of the system. As noted, the

solution does, however, require constant internal angular momentum and

an axisymmetric system. The solution is given in Appendix C.
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Multi-Rotor Satellite Model.

Fig. 4.




IV. SATELLITE MODEL FOR NUMERICAL SIMULATIONS

4.0 Introduction

Many satellites contain variable-speed spinning rotors or other
moving parts. Should an exact analytical solution for the torque—free
attitude motion of such a satellite exist, it wiil undoubtedly be much
more complicated than the single-rigid-body analytical solution
discussed in Chapter 3 and given in Appendices A, B and C. Thus, for
complex models, a practical alternative is to use numerical integration
techniques to obtain even the torque-free, or "unperturbed” solutions.l!S
Furthermore, to determine the motion of a satellite which is dynamically
complex and/or is exposed to significant perturb}ng torques (for
example, a LAM satellite ian LEO), numerical integration of the equations
of motion is the only approach generally applicable. In this Chapter, a
physical model of a satellite is described. The corresponding
mathematical model presented following the thsiéal model has been
incorporated in a digital simulation code along with models of
gravity—-gradient and aerodynamic torques. This code utilizes a
fourth-order, Runge-Kutta, numerical integration algorithm to produce
attitude motion time-histories.

The purposes of the simulation code are: (1) to verify the
correctness of the analytical solutions; (2) to determine the conditions

under which torque-~free solutions can be considered reasonably valid;

16
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and (3) to produce attitude motion time~histories for cases in which

analytical solutions are not known.

4.1 Satellite Physical Model

The "general"” satellite model (see Fig. 5) consists of two rigid
bodies, each of arbitrary mass distribution, which are coupled together
so that the smaller body, or rotor, can be rotated with respect to the
main body of the satellite, only about an axis which is fixed in the
satellite and the rotor, and passes through the center of mass of the
rotor. This physical model can be used to represent single-rigid-body
and dual-spin satellites and also satellites which possess internal
angular momentum due to constant—speed multiple, spinning components.
Since the equations of motion for the general model are to be integrated ‘
numerically, environmental torques of some complexity may be included.

Because the description of the attitude motions of satellites
requires the use of reference frames and coordinate systems, the
coordinate systems in Figs. 6, 7, and 8 are introduced. They are all
dextral, orthogonal systems. The nonrotating EXYZ (inertial)
coordinate system, depicted in Fig. 6, has its origin at the center of
the earth and is considered inertially fixed. The unit vector triad
(i,i,é) is fixed to the EXYZ system. The coordinate system, Exoyozo,
is called the "orbital plane system” and is defined by requiring that
the x,—axis lie along the line of nodes of the satellite's orbit,
directed toward the ascending node, and that the z,-axis be
perpendicular to the orbital plane, collinear with the orbital areal ‘

velocity vector. The unit vector triad (c ,53) is fixed to the

1°S2
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Fig. 5. Generic Satellite Physical Model.
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Fig. 6. Inertial, Orbital Plane, and Orbiting Coordinate Systems.
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Fig. 7. Orbital Plane and Angular Momentum Coordinate Systems.
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Fig. 8. Angular Momentum and Body-Fixed Coordinate Systems.
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Ex,Yo2z, coordinate system. An "orbiting coordinate system” Cgng which
has its origin at the center of mass of the satellite is also shown in
Fig. 6. The g-axis of this coordinate system is collinear with R, the
position vector of C. The n-axis lies in the orbital plane and is
directed in the sense of increasing true anomaly, f. The unit vector
triad (él’é2’§3) is attached to Cing. The orientation of the orbiting
frame is defined by using the standard angles: Q, the longitude of the
ascending node; i, the inclination; w, the argument of periapse; and f,
the true anomaly. The notation, u=w+f, is used for convenience,

For cases in which the satellite's rotational angular momentum is
large (HAM) compared to the magnitude of the external torque, the
orientation of the satellite with respect to the inertial system is
specified by first introducing the "angular momentum coordinate system,”
Cxygyyzy, which has its zy-axis collinear with H, the total angular
momentum vector of the satellite due to rotation about its center of
mass (see Fig. 7). The angle ¥y is used to locate the xp—axis which
lies along the intersection of the orbital plane and the plane which
passes through C and is perpendicular to H. The angle between these
two planes is eH. A unit vector triad (él,éz,é3) is associated with the
Cxyyyzy system. Finally, the orientation of the satellite-fixed,
centroidal, principal system Cxpypzp with respect to Cxpyyzy system is
defined by using the Euler angles ¢y, 6, and ¢ (as shown in Fig. 8) in a
3-1-3 rotation sequence. The angles y, 6, and ¢ are identified as the
classical angles of precession, nutation, and proper rotationm,
respectively.l2 The unit vector triad (EI’EZ’ES) is

attached to Cxpypzp-.
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Fig. 9. Local Vertical and Body-Fixed Coordinate Systems.
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Alternatively, for the LAM cases in which the satellite's angular
momentum vector is small in magnitude compared to that of the external
torque, a "local vertical” system Cxyyyzy is used which has its zy-axis
directed parallel to the negative E—-axis of the Cgnr system and its
xy~axis parallel to the orbital velocity vector. The orientation of the
satellite body-fixed system Cxpypzp with respect to the Cxyyyz, system
is defined by the angles 063, 62, and 67 (as shown in Fig. 9) in a
3-2-1 rotation sequence. Angles 61, 62, and 63 correspond to roll,

pitch, and yaw angles, respectively.

4.2 Equations of Motion

The equations governing the attitude dynamics of the "general”
satellite model depicted in Fig. 5, may be derived using H, the angular
momentum of the satellite, expressed in the satellite's body-fixed
components; P,, the angular momentum of the rotor about the axis of
rotation of the rotor with respect to the satellite; o, the angle of
relative rotation; and four Euler parameters, B> j=0,1,2,3.

Let K denote the centroidal inertia matrix of the complete
satellite, less the contribution by the rotor about the axis of rotation
of the rotor with respect to the satellite. Then, the total angular
momentum can be expressed as

H=Kw +h, (4.2.1)

W=

where w is the absolute angular velocity of the satellite in the

satellite's body-fixed components (b-basis) and where h, the internal

angular momentum vector, 1is
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h=J L |o , (4.2.2)

where J 1is the inertia matrix of the rotor about Cg, the center of mass
of the rotor, in the b-basis; gbris the transformation matrix from the
r-basis (a coordinate system fixed in the rotor with its 3-axis along
the axis of rotation of the rotor with respect to the satellite) to the
b-basis; and D is the moment of inertia of the rotor about the rotor
axis of rotation.

The differential equation for the matrix, H, is

B=gglan +1, (4.2.3)
where
0 -H H
z y
H=|H 0 -H (4.2.4)
-H H 0
y x

and T is the external torque expressed in the satellite's body-fixed

components. The momentum P, varies according to

B.=(0 0 1)[H (w +92 )] +T (4.2.5)
@ rR/CR r T o

where HR/C is the angular momentum vector of the rotor about its own
r R
center of mass, expressed in the r-basis; w and Q are the angular
T T
velocities of the satellite and the rotor, respectively, also expressed

in the r-basis; and T, is the torque on the rotor about the axis of

relative rotation.
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The Euler parameters Bj» j=0,1,2,3, vary with time according to
Bo=-gul B (4.2.6)

and

ﬁ*%‘ﬁoﬂ’ , (4.2.7)

g @

-3

where B8 = (Bl 32 83)T. (see, for example, Ref. 17, pp. 17-18 and 26).
The direction cosine matrix, ébI’ which defines the orientation of the
beybzb system with respect to the inertial coordinate system EXYZ may

be expressed in terms of B,, j=1,2,3, as follows:

3

F - 2 2 -
1 - 2082 + 83) 28 8,+ B;38))  2(By By~ By8)

e
|

b1 = [2(ByBy= B3B) 1= 2(8T + BE)  2(B,83*t BB) | . (4.2.8)
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V. TORQUES

5.0 Introduction

The environmental torques which act on artificial satellites are
very small compared to, for example, the aerodynamic torques which act
on aircraft. However, when even small torques act over significant
periods of time, large changes in attitude motion can occur. As
discussed in the chapter on "Categorization,” if the time period of
concern 1is relatively short, and if the magnitude of the satellite's
rotational kinetic energy 1is relatively large compared to the work done
on the satellite by its environment, the change in a satellite's
attitude will occur very slowly. A very important factor governing the
effects of environmental torques on the attitude motion of satellites is
the ratio of |T|, the magnitude of the perturbing torque to |H|, the
magnitude of the satellite's total angular momentum. When the ratio
|T|/|H| is very small, say &(10™%), as it would be for a HAM satellite,
the short-term effects may be considered "minute.” However, over long
periods of time they can significantly perturb a HAM satellite's
attitude motion. When |£|/|E| is much larger, say @(1), as it might be
for a LAM satellite in LEO, the satellite's attitude motion will be very
strongly perturbed, even in the short term. In some cases, tumbling
motion which exhibits no well-defined pattern may occur. Under other
circumstances a LAM satellite will tend to oscillate "about a position
of relative equilibrium."5»9

27 ‘
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Generally, environmental torques fall into two main categories.
The first category consists of environmental torques which are derivable
from a potential function. The most studied member of this category is
the gravity—-gradient torque; however portions of the "aerodynamic™”
torque (due to interactions of the atmosphere énd a satellite) may also
be derivable from a potential function. These torques are therefore
"conservative."” However, when the motion of the center of mass of the
satellite is specified, there is generally no integral of the motion
corresponding to conservation of energy, but in the special case of a
circular orbit, a Jacobi-type integral does exist if only "conservative"”.
torques are present. The other category of torques is that of

"dissipative,” or "damping,” torques. These nonconservative torques

cause secular changes in the rotational kinetic energy of the satellite

and its attitude motion. The more significant of these are: the
dissipative parts of the aerodynamic torques; the torques due to the
solar radiation pressure-—direct from the sun, as well as reflected by
the earth and its atmosphere; and torques resulting.from the interaction
of conducting parts of satellites with the earth's magnetic field. The
most dominant in orbits of altitude up to 300 km are the aerodynamic
torques.5:9516

Many of the perturbation techniques employed ih the treatment of
satellite orbital motion can be employed analogously to study satellite
attitude motion in the presence of perturbing environmental torques.
Any further discussion, or reference, to environmental torques in this

report will center on the two most dominant, gravity-gradient and ‘

aerodynamic.




29

5.1 Gravity-Gradient Torques

According to Beletskii,d the primary effect of gravity-gradient
torques "amounts to secular precession of the angular momentum vector
around the normal to the orbital plane.” He goes on to say that
"periodic nutations of the angular momentum vector (with a period
comparable to the satellite's orbital period) are superimposed on this
secular precession."9

Gravity-gradient torques are due to the fact that the earth's
gravitational field is not uniform. This non-uniformity in both the
magnitude and direction of the field over distances even as small as the
dimensions of an orbiting artificial satellite result in a “"gravity-
gradient” potential over the satellite body. This gravity-gradient
potential over the satellite results in a gravity-gradient torque about
the satellite's center of mass. This gravity-gradient torque was first
considered in the context of celestial mechanics in 1749 by d'Alembert
and Euler, and later in 1780 by Lagrange.!’/s18

A number of factors are involved in determining the perturbation
effect of gravity-gradient torque upon the satellite's attitude motion.
If one assumes that the satellite is a single-rigid-body orbiting a
spherical primary in a circular orbit, the problem is greatly
simplified. With these assumptions, the gravity-gradient torque becomes
a function of the distance from the center of mass of the satellite to
the center of the earth; the values of the principal moments of inertia;
and the orientation of the satellite's body~fixed axes with respect to
the radius vector between the center of the earth and the satellite's

center of mass. Using the above assumptions, the gravity-gradient
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torques on an asymmetric satellite in a Newtonian gravitational field

can be expressed in the form9:!651/519

- .
(C-B) C93C33
3uE
Ig = =3 | (AC) e55¢q3|

where R is the magnitude of R, the position vector from the center of
the earth to the satellite's center of mass; A, B, and C are the
principal centroidal moments of inertia; and the Cj3» j=1,2,3, are the
direction cosines of R in the satellite's body-fixed coordinate system.
If the above simplifying assumptions are not made the expression for the
gravity-gradient torque is much more complex. For example, if one
assumes an "oblate earth,” the expression for the xp—component of the

gravity-gradient torque has the forml?

3uE 3uEJ2Ri : )
Tgx = F— (C"B) C23C33 + —TR-F—_ (C-B)[5(1-7 sin )\)C23C33
-10 sin )\(c23ce33 + c33ce23)—2cez3ce33] (5.1.2)
where Jy = 1.083x1073, A is the latitude of the center of mass of the

satellite, R, is the equatorial radius of the earth, and Cej3» i=1,2,3,
are the direction cosines between the body~fixed axis and the earth's
polar axis. Note that the additional gravity-gradient torque terms in
Eq. (5.1.2) diminish at a rate of R™° while the terms in Eq. (5.1.1)
diminish at a rate of R™3. For small satellites, the additional terms

due to the asphericity of the primary can be neglected as they normally




31
result in less than a 17 difference, even for satellites in "low earth
orbits."!/ However, if one were to consider a larger satellite, such as
the proposed Space Station, then the higher order terms would take on
greater significance.l’

Anofher concern is that of more than one celestial body. In the
earth, moon and sun system one must consider the gravity-gradient
effects of the other celestial bodies in much the same manner that
one considers their perturbing effects upon orbital trajectories. For
near earth orbits, one may assume that the satellite is within the
"sphere of influence” of the earth, and include only the perturbing
effects of the earth. To illustrate this point, consider that for a
geosynchronous orbit the gravity-gradient torque due to the moon is less
than 0.0023% of that due to the earth, and the gravity-gradient torque
at geosynchronous altitudes due to the sun is less than 0.0011%Z of that
due to the earth.l’

To summarize, for the purposes of the simulations used in this
investigation, the following assumptions were found to give a
sufficiently accurate representation of gravity-gradient torques on the
satellites modeled: (1) the satellite mass distribution is that of a
single, tri-inertial (or asymmetric), rigid body; (2) its center of mass
is moving in a two-body orbit about a spherical primary; (3) the
greatest dimension of the satellite is much smaller than the radius of
the orbit of its center of mass; and (4) the orbital plane may be

rotating in a prescribed manner.
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5.2 Aerodynamic Torques

As noted in the introduction to this chapter on environmental
torques, there are a number of dissipative torques. The most dominant
of these in the LEO altitude range are the aerodynamic torques.

Although well outside the domain of "atmospheric vehicles,” artificial
earth satellites are by no means free of the effects of the atmosphere.
This is demonstrated by the constant attention which those who track
satellites pay combating the problem of orbital decay due to atmospheric
drag. The treatment of aerodynamics at orbital altitudes as opposed to
lower altitudes is different. At orbital altitudes the "mean free
paths” between molecules are on the order of a kilometer or more, much
larger than the dimensions of LEO satellites. This means that one need
not consider collisions between molecules approaching the satellite's
surface with those leaving the surface. Thus, one can use a
"free-molecular flow model” to approximate the "aerodynamics"” of
satellites. This treatment greatly simplifies the determination of the
aerodynamic torques acting upon a satellite.9s!/

There are four primary aerodynamic effects on satellites moving in
the free-molecular flow regime. The first effect is similar to the
"Weather Cock"” effect which occurs in the lower portions of the
atmosphere. This effect is due to the fact that the center of pressure
and the center of mass of the satellite do not coincide. As a result of
this, there is a restoring torque which tends to stabilize the satellite
in the direction of the resultant of the orbital velocity of the
satellite and the local velocity of the atmosphere due to the earth's

rotation. The second effect is due to the angular velocity of the
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satellite about its own center of mass. The torques developed due to
this effect are known as the "spin damping dissipative torques.”©s9
Since even for high rates of satellite rotation the linear velocity due
to rotation is much smaller than the satellite's orbital velocity, these
torques can be considered to vary linearly with angular velocity. The
last two effects are small by comparison and are usually ignored. These
are pressure gradient and the molecular thermal velocity effects. The
pressure gradient effect is due to the density différential which exists
over the satellite surface (being higher on the portion of the satellite
facing the earth). The contribution of molecular thermal velocity is
generally neglected because it is much smaller than the orbital velocity
of the satellite.?d

For the purposes of this research effort, only the first two
aerodynamic effects were considered to be significant. The model chosen
to simulate the satellite in a free-molecular flow regime is a right-
circular cylinder, a shape which is common among satellites. The
coordinate axes chosen, as seen in Fig. 9, are very similar to those
used by Etkin20 to describe the motion of atmospheric vehicles. Note
that the axls of symmetry has been &esignated the xp—axis in a
CxpyazpA system. For the purposes of this work, it is assumed that
the axes of Cpxpyazp are aligned with the axes of CxpYp2zps but that C
and Cp do not coincide. The Cpxyyyzy, "relative wind” system, has its
Xxy—axis along the orbital velocity vector and its zy—axis lies in the
orbit plane and points (nominally) toward the center of the earth.
The angles, ay and B4, between the relative wind system and the
body-fixed system are the angle of attack aﬁd tﬁe sideslip angle,

respectively, of the satellite (see Fig. 10). For the purpose of
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Fig. 10. Angle of Attack and Sideslip Angles.




Fig. 11.
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Diagram of Aerodynamic Cylinder Model.
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integrating the force per unit area, the cylinder is divided into three
surfaces, S1, Sy and S3 (see Fig. 11). Position vectors, Iys Lo and
L from the centroid of the cylinder to the surface elements dS;, dS,p,
and dSj3, respectively, are used in deriving an expression for the torque

about Cp. The aerodynamic torque on the cylinder may be written as

follows:

=3
1}

-1/2 9 Cdlg r, x (n;°NHV 45, + / r,x(n, V)V dS,

1 $y

+ [ £ax (23°0V d5,] , (5.2.1)
s
3

where p is atmospheric density, cq is an accommodation constant,

~ ~

LT P and n, are the normal unit vectors normal to each respective

surface, V = YC + wx Ej’ j=1,2, or 3, where V, is the translational

C
velocity of the satellite's center of mass,* and w = (p q r)T. The
results of the derivation of the aerodynamic torques on the right
circular cylinder are given in Appendix D.

It must be realized that any model of the aerodynamic torque on a
satellite in orbital space is an approximation. Two factors which limit
the accuracy of the modeling are variations in atmospheric density, and
"shadowing,” or "blanketing,” of portions of the body by its other

portions, for example, solar panels.!’/»>2l Sinece the purpose of the

sirulations contained in this thesis is to determine qualitatively the

*Note that strictly speaking the velocity V should be used.

Ca

However, this would only modify the results by changing the Ej’
j=1,2,3, slightly.
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effects of environmental torques, a rather simple exponential
atmospheric density model was adopted. Obviously, this model does not
take into account such sources of variations in density as the diurmal
cycles, orbital inclination (latitude variations at equal altitudes),
and solar activity. Also, although a right-circular cylinder is a good
approximation to the shape of many satellites, for satellites which have
complex geometries (such as those with large sun seeking solar arrays)
shadowing is a major problem. Such arrays can, at certain satellite
attitudes, blanket large portions of the satellite surface resulting in
torques greatly different from those on an unshadowed body.2! However,
the modeling of these complex satellite arrays for all possible aspects

is extremely difficult and 1is beyond the scope of this effort.



VI. SHORT-TERM APPLICABILITY OF TORQUE-FREE
ANALYTICAL MODEL

6.0 Introduction

When a closed-form analytical solution exists for the torque-free
motion of a particular satellite, it is generally the more efficient
solution for short-term attitude motion simulations. Numerical
solutions, although generally available, tend to require much more
computer time than torque-free analytical solutions, especially in the
case of satellites with high rates of rotation which necessitate the use
of small integration step-sizes. However, when one attempts to
incorporate the perturbing effects of environmental torques into the
analytical approach, the complexity of the analytical solution increases
significantly. In some cases, specifically, those in which the
magnitude of the total angular momentum is much larger than the
magnitude of the environmental torques acting upon the satellite, the
torque—free analytical solutions are very accu;ate over short time
periods. In other cases, for example, those in which the magnitude of
the environmental torque is greater than the magnitude of the total
angular momentum of the satellite, a numerical approach incorporating
environmental torques is usually necessary.

The purposes of this chapter are to investigate the fidelity and
applicability of the analytical solutions discussed in Section 3.3 and
to present some results of numerical simulations of LAM satellite atti-
tude motion. First, to verify their fidelity, the analytical solutions

38
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are compared with results from the numerical simulation code. Second,

to determine the applicability of the torque-free analytical solutions,

they are compared with numerical simulation results obtained using the
same initial conditions, but including gravity—gradient torques. This
comparison illustrates how, at lower angular momentum levels (as
compared to the magnitude of the environmental torque), the fidelity of
the torque—free analytical solutions degenerates rapidly, indicating the
need to use either an analytical or a numerical solution which
incorporates environmental torques. Third, to show that there are cases
for which the analytical solutions cannot be expected to provide
accurate results, some examples of simulated attitude time—histories of
actual satellites in the LAM category are presented.

6.1 Applicability of Analytical Solutions

To verify the analytical solutions, the numerical simulation code
was run with the data shown in Table 1. The data used in the analytical
solutions is given in Table 2. Note that the moments of inertia in
Table 1 differ slightly from those in Table 2. This is due to the fact

that the numerical code uses a single movable rotor to simulate the two

rotors of the analytical model. In each, the system is axisymmetrice.

As verification of the analytical solution, the results for the four
cases are shown in Figs. 12, 13, 14, and 15. The variable "TAU" is a
"noidimensional” time, defined as TAU = Ht/A. The numerical results are
shown as triangles superimposed on the corresponding analytical
time-~histories (continuous curves) of the precession, nutation, and
proper rotation angles, respectively. The first three cases (shown in
Figures 12, 13, and 14) are for an oblate satellite with various initial

angular velocities. The fourth case (Fig. 15) is for a rapidly spinning
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prolate, dual-spin satellite with a misaligned rotor. As can be seen,
the numerical and analytical results are, within the numerical
precession of the calculations, the same.

The numerical simulation code was modified to demonstrate the
fidelity of the analytical solution for HAM cases in the presence of
environmental torques. The modifications to the code included the
incorporation of gravity-gradient torques, and a routine which would
allow the sampling of the time-histories of the three attitude angles at
a time many nutation periods in the future. The computer program was
used to integrate the equations of motion over the intervening period,
but output to data files for plotting was limited to the desired sample.
The case which was run used the data from Case III in Table 1. The
attitude motion of the satellite as perturbed by gravity-gradient torque
was simulated for a time equal to a quarter of an orbit (1342.6 sec for
an orbital altitude of 250 km). As can be seen in Fig. 16, the torque-
free analytical time histories and the projected numerical solutions
agree in amplitude very well. There is a "phase shift”™ which is prob-
ably due to to the fact that the nutation period was not exactly equal
to the number used to determine the beginning of the second sample time.

To determine the magnitude of rotational angular momentum for which
there would be significant disagreement between the two solutions, the
initial angular momentum was successively reduced. To obtain the
results shown in Fig. 17, the initial angular velocity and internal
angular momentum components were each divided by 120. The results were
chosen for illustrative purposes because they show a large difference in

the amplitudes of the solutions, but the attitude motion structure has
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not yet broken down. That is, the three angles of precession, nutation,
and proper rotation are still appropriate for describing the motion of
the satellite. As was noted previously in Section 4.1, at low angular
momentum levels, roll, pitch, and yaw angles are more appropriate for
describing the satellite's attitude motion because then ¢, 6, and ¢ are
not well defined. The amplitudes of the LAM (torqued) numerical results
are significantly greater than the HAM torque~free analytical results.
One could infer from these that the torque-free analytical solutions
would be appropriate for short-term HAM satellite attitude motion
simulations, and that the (torqued) numerical simulations more

appropriate for short-term LAM satellite attitude motion simulations.

6.2 Low Angular Momentum Examples

The capability of the numerical simulation code when applied to low
angular momentum (LAM) satellite simulations, was demonstrated by making
eight simulation runs using data for three actual satellites. Four
simulation runs were made using data for the Hubble Space Telescope
(HST). Then, using the data from the Earth Resources Satellite
(LANDSAT) and the Advanced X-Ray Astrophysics Facility (AXAF), two
computer runs were made for each of the two satellites. The satellite
physical data for the HST satellite simulations can be found in Table 3.
The corresponding orbital data can be found in Table 4. The data used
for the LANDSAT and AXAF simulation runs found in Tables 5 and 6 is
presented in the same manner.

All of the results from the simulations are in the form of
time—histories of selected parameters over fi;e orbital periods.

These parameters are: (1) the Euler parameters, B,, B1, B2, and B3;
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(2) orientation of the satellite with respect to its local vertical
coordinate system in terms of roll, pitch, and yaw angles; (3) the
body-fixed components of the satellite's total angular momentum vector;
(4) where applicable, the body—fiked components of the aerodynamic
torque, and (5) again, where applicable, the components of the gravity-
gradient torque, also with respect to the satellite's body-fixed axes.

The four HST cases run include circular LEO, circular HEO, and
elliptic LEO cases, all with environmental torques, and an elliptic LEO
case without environmental torques. The results for the HST are shown
in Figures 18, 19, 20, and 21. The LANDSAT cases are a circular LEO
case and a circular HEO case. Both include only gravity-gradient
torques. The two AXAF cases run are both circular LEO, one with
environmental torques and one without. The results of the LANDSAT
simulations are found in Figures 22 and 23. The results of the AXAF
simulations are found in Figures 24 and 25. A more detailed analysis of
the simulation results is made in the following paragraphs.

6.2.1 HST Simulations

In the first HST case, as with other HST cases, the satellite is
initially "pitching down,"” or rotating, about its negative yp—axis at
orbital rate. The satellite also has some internal angular momentum due
to a reaction wheel spinning aboutrits xb-axis.A All of the HST cases

begin with a 45° pitch angle with respect to the local horizontal.

HST Case 1
The first figure for the HST (see Fig. 18 a) shows the
time~histories of the Euler parameters, henceforth referred to as the

“Beta plots.” The individual Euler parameters oscillate in two modes; a
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"low" frequency mode with a comparatively large amplitude and a "high"
frequency mode with a much smaller amplitude. The time~histories of the
roll, pitch, and yaw angles are presented in Fig. 18 b. Note that the
pitch angle begins at 45° and oscillates at a relatively high frequency
at progressively lower amplitude due to aerodynamic damping. After five
orbits, the amplitude of the oscillation is approximately half its
initial value. The roll angle shows relatively steady oscillations at
low frequency, approximately equal to the orbital f;equency and a
smaller amplitude high-frequency mode. The yaw angle shows the same
high frequency oscillation with fairly regular pulse-like changes in
amplitude.

The third figure (see Fig. 18 c¢) shows plots of the angular
momentum components in which the damping of the component about the
yp—axis is commensurate with the damping in pitch. The angular momentum
component about the xp—axis remains nearly constant, and is due to the
internal angular momentum and the lack of environmental torques about
that axis. The xp—component is similar to the yaw oscillations in that
it has relatively small amplitude pulses.

The variations in the components of aerodynamic torque, shown in
Fig. 18 d, are proportional to the corresponding angular momentum plots
in all three components. In order to give the satellite model a margin
of static stability, the center of gravity was placed 1/10 of the length
of the satellite forward along the xp—axis from center of pressure (the
centroid of the right—circular cylinder model). This was also done for

the AXAF satellite.
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The fifth, and last, set of plots for this case is given in
Fig. 18 e. These are the time-histories of the components of the
gravity-gradient torque. Here again the variatiouns in the three
components are proportional to those of the corresponding components of
the vectors shown in the previous three figures. Notice, however, that
the maximum amplitude of the oscillations in the gravity-gradient torque
components is two orders of magnitude smaller than that for the

aerodynamic torque.

HST Case II

Results for the second HST case were obtained using all of the same
initial conditions as the first case except of orbital altitude. The
first HST case was a circular orbit with an altitude of 250 km. In the
second case, the orbit model was a circular orbit with an altitude of
800 km. The Beta plots for this case (see Fig. 19 a) show somewhat
similar low frequency/high amplitude oscillations of the parameter, but
the high frequency/low amplitude oscillations have disappeared. The
attitude angles (see Fig. 19 c¢) are very different from that for the
first case. The pitch angle shows oscillations of similar amplitude
initially, but does not exhibit the same aerodynamic damping. Also, the
frequency of the oscillation in pitch is much lower for this case. The
roll and yaw angles both oscillate at lower frequenciles but at greater
amp .itudes than in the previous case. Also, note that roll angle
oscillation is changing secularly in the negative direction. The
angular momentum plot (see Fig. 19 c) shows that the Xp-component
remains constant. Note that the maximum amplitude the oscillations is

an order of magnitude less than the first case. This is due to the
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lower orbital rate and low level of excitation by aerodynamic torque.
The yp-component is varying secularly in the positive sense while
oscillating slowly with amplitude which decreases and then increases.
The zp-component exhibits what appear to be long-period variationms.
While changing in this manner, the zp—component is also oscillating much
like the yp~component. The aerodynamic torque components (see Fig. 19
d) are several orders of magnitude smaller than they were in the first
case; in fact, they are smaller than the gravity-gradient torque
components (see Fig. 19 e). This is due to the fact that the model of
the density of the atmosphere decreases exponentially with altitude,
whereas the gravity-gradient torque is proportional to the inverse cube
of orbital radius.

HST Case IIL

The third HST case is a low, slightly elliptic orbit (e = .0l). As
a result of the ellipticity, the orbital altitude ranges from a perigee
altitude of 184 km to an apogee altitude of 316 km. The Beta plots in
Fig. 20 a exhibit two frequency modes seen in Case I. But the
amplitudes of the lower frequency/high amplitude modes show some
parameters with growing amplitudes and others with diminishing
amplitudes. The attitude plot for this case (see Fig. 20 b) shows that
the roll angle oscillates in two frequency modes as in the first case,
but it is also changing secularly in a negative sense. The pitch angle
time history contains a high frequency oscillation (as in the first
case) and is decreasing in amplitude as time progresses, but there are
amplitude pulses which initially coincide with apogee passage. These

pulses most likely result from the lower level of pitch damping due to
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lower atmospheric density at the apogee altitude. The yaw angle
oscillations have approximately the same frequency as the oscillation in
pitch. However, the yaw angle oscillations begin with zero amplitude
and then increase. Initially, the yaw amplitude pulses coincide with
the pitch amplitude pulses in frequency. As time progresses and the
amplitude of the yaw angle pulses grows larger than the diminishing
pitch angle pulses, it also becomes out of phase. The yp— and
zp~components of angular momentum in Fig. 20 c¢ behave very similarly to
the pitch and yaw angles, respectively, of the attitude plot. The
xp-component of angular momentum remains nearly constant due to the
internal angular momentum of the satellite and the fact that there is no
aerodynamic torque (Fig. 20 e) about the xp—axis. The yp—component of
aerodynamic torque decreases in amplitude with periodic pulses which
coincide with perigee passage. The zp—component of aerodynamic torque
remains at a relatively low amplitude with pulses also coincident with
the perigee yp—component pulses. The amplitude of the yp-and
zp—-components of the gravity-gradient torque pulse not so much as a
result of the changing orbital altitude as with the changing of
orientation due to the rolling motion of the satellite. That is, when
the yp-axis is bointed more towards the center of the earth, the
zp—component of gravity-gradient torque increases in magnitude. The
coaverse is also true.
HST Case IV

This case has the same initial conditions as Case III. However, in
this simulation the environmental torque subroutines were “"disconnected”

so that the motion is torque-free. The Beta plots (Fig. 21 a) show only
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the expected low frequency/high amplitude oscillations. The attitude
angles (Fig. 21 b) show the same secular variation in roll angle and
almost the same for low frequency oscillation as in Case III, but the
high frequency oscillation has disappeared. The pltch angle has a low
frequency/low amplitude oscillation and slight secular departure in the
negative direction. The yaw angle shows a slightly higher amplitude and
a frequency similar to that of pitch angle. The yaw angle does not
appear to change secularly. The angular momentum (Fig. 21 c¢) has a
constant xp—component, and the yp—-and zp—components exhibit single-~
frequency, low—amplitude oscillations, but are out of phase with each
other. The low amplitude is due to the low angular rates which are

unexcited by environmental torques.

6.2.2 LANDSAT Simulations

The LANDSAT attitude motion simulations differ from the HST simula-
tions in a few respects. First, the satellite physical data indicates
that the satellite's moments of inertia are an order of magnitude
smaller than the HST. Second, the LANDSAT model possesses no internal
angular momentum as did the HST. Third, the initial orientation of
LANDSAT model with respect to the local vertical differs from that of
the HST. The HST simulations began with an initial pitch angle of 45°,
but the LANDSAT simulations begin with a 10° pitch angle and a -80° yaw
angle. Fourth, the initial angular rate of the HST was a negative pitch
about the yp-axis at orbital rate, while the initial angular rate of the

LANDSAT is ncosl0° about the xp—axis and nsinl0° about the zp—-axis,

where n is the orbital mean motion for a given orbital radius. Fifth, ‘
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the orbits which are used for the LANDSAT simulations are both inclined
at 98.2° as compared to the 28.5° inclination used for the HST cases.

The first LANDSAT case is for a circular orbit with an orbital
altitude of 352 km. The second LANDSAT case is also for a circular
orbit, but the orbital altitude is 705 km. In both of the LANDSAT
cases, only gravity-gradient torques were simulated.
Case I

In the 352 km orbital altitude case, the Beta plots (Fig. 22 a) are
irregular oscillations which show strong orbital coupling. These
oscillations are most similar to the HST Case IV Beta plot (Fig. 21 a),
but are somewhat more irregular. The attitude angle plots (Fig. 22 b)
shows that roll angle increases secularly with some irregular
"oscillations.” The pitch angle time-history also shows similar

irregular "oscillations,” but no secular departure. The yaw angle
time-history contains higher amplitude irregularities and is also not
changing secularly. The angular momentum plot (Fig. 22 c¢) indicates
that this case is a much lower angular momentum case than the HST cases.
Note that the scale used in the plots is two orders of magnitude smaller
than that for the previous HST angular momentum component plots. The
Xp-component remains nearly constant and the yp—and zp—components have
low frequency/low amplitude oscillations and no apparent secular change.
The gravity-gradient torque component plot (Fig. 22 c¢) shows that the
gravity-gradient torque is an order of magnitude less than it was for

the HST cases. This 1is due to the fact that the LANDSAT satellite is

much smaller than the HST.
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Case TI

The results of the second case are nearly identical to that of the
first case. The Beta plot (Fig. 23 a) are almost identical to that for
the first case. The attitude angles for both cases (Figs. 22 b and 23
b) are also almost identical. The angular momentum component plots
(Figs. 22 c and 23 c) are slightly different. The orbital mean motion
in this case is very slightly lower due to the fact that the orbital
altitude is 705 km. As a result of the slightly lower angular velocity
magnitude, the angular momentum components have slightly lower |
amplitudes. Again in the gravity-gradient torque plot (Fig. 23 d), the
amplitudes are slightly smaller due to the higher orbital altitude.

6.2.3 AXAF Simulations

This is the final satellite considered in the numerical
simulations. The AXAF satellite is more similar to the HST than the
LANDSAT. Geometrically, the sizes of the AXAF and the HST are nearly
identical. However, the moments of inertia‘of the AXAF are slightly
more than twice as large as those of the HST. The AXAF model includes
no internal angular momentum. The initial orie:- tation of the satellite
model has a 45° pitch angle with respect to the local horizontal as does
the HST. Also, the AXAF model has a 45° yaw in the negative sense. The
initial angular rates of the AXAF satellite model are 1.0x1073 rad/sec
about the xp-axis and 1.0x10™% rad/sec about the yp—axis. The orbital
inclination is the same as for the HST simulations, 28.5°. Both of the
AXAF simulations assume a circular orbit with an altitude of 400 km. 1In
the first case, both of the environmental torques were simulated. 1In

the second case, no environmental torques were included.
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Case 1T

The Beta plots (Fig. 24 a) show the reappearance of the two
frequency mode oscillations seen in the first HST (LEO) case. Here, the
high frequency/low amplitude oscillations have a lower frequency and are
more irregular than those in the first HST case. This is due to the
high frequency/low amplitude oscillations have a lower frequency and are
more irregular than those in the first HST case. This is due to the
intermediate altitude of this case (400 km), which is between the firét
HST case (250 km) and the second HST case (800 km) where the high
frequency oscillations have disappeared. The roll angle in Fig. 24 b
behaves much differently than in previous cases. The roll angle
increases to approximately 650°, then decreases to around 200°. The
pitch and yaw angles appear to be almost periodic with no secular
variations. They behave much like the pitch angle in the second HST
case (see Fig. 19 b). The components of angular momentum (Fig. 24 c)
also behave in a manner which suggests that this case represents a
"transition” between the first and second HST cases. Note that the
maximum amplitude of the angular momentum is an order of magnitude
greater in this case. There 1is no apparent damping effect due to
aerodynamic torque on any of the components. Note that the xp~component
is not constant as it has been in previous cases. The reason for this
can be seen in the gravity-gradient torque component plot (Fig. 24 e).
The xp~component of gravity-gradient torque is not constant because
there is a large difference between the moments of inertia Iyy and I,,.
The aerodynamic torque components (Fig. 24 d) are essentially
proportional to the angular momentum components. Note that the maximum

amplitude of aerodynamic torque lies somewhere between those for the
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first and second HST cases. Also, note that the maximum amplitude of
the gravity-gradient torques is approximately twice that of the first
HST case. This is due, as we stated previously, to the fact that there
are greater differences in the values of the three principal moments of
inertia.
Case 11

This final numerical simulation case has the AXAF model with
initial conditions identical to the first AXAF case. The differencea?
between the two are a result of the absence of environmental torques in
the second case.

The Beta plots (Fig. 25a) show only the single low frequency/high
amplitude oscillations. The attitude angle plots (Fig. 25 b) show that
all three angles "oscillate™ at a relatively low frequencies with
significant irregularities. The final plot of this section, the angular
momentum plots (Fig. 25 c¢), are similar to tpe corresponding plots for
the second HST case. That is, the xp—component remains constant, while
the other two exhibit smooth oscillations of the same frequency and
amplitude and are slightly out of phase.

6.2.4 Summary of Low Angular Momentum Examples

The results of the eight cases given in this section indicate that
the time-histories of some of the variables used to describe the
attitude motion do not exhibit well-defined patferns. In some cases,
aerodynamic and gravity-gradient torques perturb the attitude motion of
low angular momentum satellites to such an extent that existing
torque-free analytical solutions are not valid for any significant

period of time.
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VII. PREDICTION OF LONG-TERM MOTION

7.0 Rationale

As was stated previously, there will likely be a time lapse of
several months between a satellite's "failure" and a recovery attempt.
Therefore, a need exists for an accurate long-term attitude motion
simulation for mission feasibility studies and planning. This chapter
focuses on this need. As with the short-term attitude motion
simulations, there are two approaches to the problem of perturbed
long-term attitude motion. These are the General Perturbation Methods
(GPM), and the Special Perturbation Methods (SPM). To apply the usual
GPM, one needs an analytical solution to the unperturbed problem.
Examples of unperturbed solutions include two-body orbital motion and
"free-Eulerian” rotational motion. Tractable analytical expressions for
perturbations are also required. The SPM most commonly applied are that
of numerical methods. Examples of numerical perturbation methods
applied to orbital motion include the work of Cowell and Encke.2%
Applications to attitude motion include the work of Kraige and
Junkins.25 The short-term motion simulation, described in Chapter IV,
also uses numerical perturbation methods.

Both GPM and SPM have shortcomings which hamper their application
to attitude dynamics problems. The application of the GPM is difficult
or perhaps impossible 1f the satellite is dynamically complex. On
the other hand, the numerical approach, although generally applicable,

108
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often requires large amounts of computer time, especially when higher
angular rates necessitate the use of very small integration step sizes.
For these reasons, a "hybrid” method was developed and labeled the
"Semi~Analytic method.” This method incorporates the use of analytical
averaging concepts from GPM, and numerical integration techniques from
SPM to obtain “"averaged equations of motion” which govern the long-term

attitude motion of certain classes of satellites.

7.1 Averaging Method

In order to apply the General Method of Averaging to the equations
of motion to obtain the "averaged equations of motion,” new variables

must be introduced. These variables are elements of x and y, where

X
]

(H HcoseH YH), (7.1.1)

and

y=(vM, (7.1.2)

where M is the mean anomaly. The elements of x are the "slow" variables
and the elements of y are the "fast" variables. The time derivatives of

x and y take the forms,

L]
X

e £,(x, ¥ : (7.1.3)

and

7 =8,(x ) +eg(x, 1), (7.1.4)
where go(g, y) 1is the "unperturbed” time derivative of y, ¢ gl(§, y)
and ¢ 31(5’ Y) are the "perturbations” due to external torques on the

satellite, and ¢ is the usual small parameter introduced for

perturbation analyses.
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Here, it will be assumed that the functions of gl(g, y) and
gj(§, y), j = 0,1, are periodic with period 2w in the elements of y.
Since the elements of y are Euler angles, this will be the case for a
variety of torques.

A new set of variables (g, i) is defined by

I
It
X1
+
m

u (% P +e? uy(x, P+ ... (7.1.5)

and

Y=y+tey (X D+e? Bu(x, D+ ... (7.1.6)

where the functions Ej and Yj’ j = 1,2, are to be chosen to make the

differential equations for g and i simpler than those for x and y.

Equations (7.1.5) and (7.1.6) may be differentiated with respect to time

to get

x=x+eu +e2y, + ... (7.1.7)
and

I=ytey +e2y, + ... (7.1.8)

The respective right-hand sides of Equations (7.1.3) and (7.1.7), and

(7.1.4) with (7.1.8) may be equated to provide

' L]
ey

IXie
+

L ey, t e = e £(x, ) (7.1.9)

and

1 + ¢2 ) S go(g, y) + € gl(§, Y) (7.1.10)

I

I+ev

where the arguments of Bj and !j have been dropped for brevity.
The aim of the averaging method is to obtain averaged equations of

motion which do not contain the "fast variables.” It is assumed that
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the éj and éj are Gakl) (or smaller), and the coefficients of equal

powers of ¢ in Eqs. (7.1.5) and (7.1.6) are grouped, then the

averaged equations of motion may be obtained in the forms,

x=ef(x, 9 +e £(% Y (7.1.11)
and
= go(i, y) +te gl(i, ) N (7.1.12)

where an overbar over a function indicates its "average"” value. This

requires that the "periodic perturbations” be chosen such that

L= 5H&E D - £GP (7.1.13)

=)
|

and

1= 8 (% D - g (x, )+ (9g,/0%) vy

I<e

+

(3g,/3¥), ¥y » (7.1.14)

where ( ), indicates evaluation of the function ( ) at € = 0. The

function u

1 can be found by putting the zeroth—order solutions for

2 and i into 51 and integrating with respect to time. Then, !1 may be

found by solving Equation (7.1.14), which is a linear differential

equation if the zeroth-order solutions for g and 2 are used. Here,
"average" is defined using the zeroth-order solutions for g and i. For
a free, single-body satellite, the angles E and E are ordinarily
monotonic, while terms like sinOpysin¢g have zero averages. Other terms,

for example, cosf, usually have non—-zero torque-free average values.
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In torque-free motion, when the satellite contains spinning rotors ¢ may

be bounded. A further explanation of this behavior is given in Ref. 15.

7.2 Equations of Motion

The equations of motion for this semi-analytic method were derived
from expressions for the angles ¥y, Of, ¢» ¥, 8 and |EJ, the magnitude
of the total angular momentum vector. The angles were described in
Section 4. The angles ¥y and Oy describé the long-term motion of the
angular momentum coordinate system with respect to the orbital plane
coordinate system (see Fig. 7). The angles ¢, 6, and ¢ describe the
short-term motion of the satellite's body-fixed coordinate system with
respect to the angular momentum coordinate system (see Fig. 8). 1In
vector notation, the total rotational angular momentum vector can be
written as

E:

(L]

‘w+h, (7.2.1)

where I is the principal, centroidal inertia dyadic, matrix, w is the
angular velocity vector, and h is the internal angular momentum vector.
In matrix notation, this expression may be written as

(M H )T =1w+ (h, by hz)T (7.2.2)

y
An expression for the angular velocity vector can be derived from
Eq. (7.2.2). It is found that

w=1I"!(H-h . (7.2.3)

The time rate of change of the angular momentum vector, H, written in

vector form is

([ Tie
1]
[Ja-1
+
e
o
(<]

(7.2.4)
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where

B=at i i) (2, 3, ap)T (7.2.5)

In matrix notation, the external torque expression is

T=0 -Hu, (7.2.6)
where -
[ 0 ~-H H
z y
E. = HZ 0 —HX (7 .2 -7)
| ~Hy Hy 0
and
n=@ 8 74)T,

- Xy 2
H can be written in the satellite's body-~fixed system, or in the angular

momentum system. In the satellite system, it is written

ﬁ:

==

w+T. (7.2.8)
Alternatively, by substituting in Equation (7.2.3), one finds

f=HI' E-h+T. (7.2.9)

In the angular momentum system,
ﬁu = éu w + Ty s (7.2.10)

where H, = (0 0 H)T, H = |H| and T =(T T T
- - =H Xy ¥ z
H “H

angular velocity of the angular momentum system, Wy includes the

)T. The

secular effects of the regression of the line of nodes of the

satellite's orbit. Explicitly,
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Q si SWH

&4 = Q[si cOycty, + ci SOH]

H
Q[ci cOy ~ si sOy cWHU

- -~

B, ( o
+ WH sineH = wa . (7.2.11)
@ cosO w,
L H HH | ZH_

The relationship between w and Wy is w = Wy + ), where

cé sbs¢ O 8
A = |-s¢ sbco 0 ¥ (7.2.12)
0 ch 1 $

is the angular velocity of the satellite with respect to the angular
momentum system.

The equations of motion for the short-term variables include
expressions for 5, B, $ and &- The parameters a and b are used to

define 6, the nutation angle, where a and b are defined as

[+
1t

H sing (7.2 13a)
and : :

H cosb . ’ (7.2.13b)

o
n

The components of the angular momentum vector can then be found from the

relations

ju e}
fl

a sing, (7.2.14a)

= o]
1]

a cosé, (7.2.14b)
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and
H = b. (7.2.14c)

The time derivatives of a and b, which may be integrated to find the

time-history of the nutation angle, are

a = b{[a sing - hx) cos¢p]/A - [(a cos¢p - hy) sing]/B}

+ TX sing + Ty cos (7.2.15)

T'e
il

[(B-A)/AB] a sin¢ cos¢ + (hX/A)a cos¢
- (hy/B) a sing + T,» (7.2.16)

where A, B, and C are the principal centroidal moments of inertia,
and where T, is the zp-component of external torque. From Eqs.
(7.2.14), (7.2.15) and (7.2.16), one may obtain the following equations

for ¢ and s

o = (b-h_)/C-b[B sin2¢ + A cos24]/AB
+ (b/a)(A hy cos¢ + B hx sing)/AB
+ (Tx/a) cos¢p - (Ty/a)sin¢ (7.2.17)
and
U = H[B sin2¢ + A cos2¢]/AB - {[Ah cos¢ + Bh sing]/AB
+ [(T_ /H) cosy + (T_ /H) siny] cosB}/sind
Xy Tu
- (’I‘XH/H) cote, - ¢ sini cos¥,/sing, . (7.2.18)

The time derivatives of the long-term variables ¥y, O, and H are

¥y = -9 sin i cosy, coto, - @ cos i + (TXH/H)sinOH s (7.2.19)
qﬂ = - sin i sinWH - Ty /H (7.2.20)

H
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and

i=1 (7.2.21)

where T_ , T. , and T_ are the components of external torque in the
X y z
H H H

angular momentum system.

7.3 Results

To demonstrate the capability of the semi-analytic simulation
method, two examples are given. The first examplel® involves an
axisymmetric satellite which contains two axisymmetric rotors on the
satellite's xp—and yp—axes, respectively. The second example concerns
the Combined Release and Radiation Effects Satellite (CRRES).2® 1In this
section, a brief description of the computer code designed to use the
semi-analytic method is first given. Next, the results of the two
examples are presented and finally, a summary of these results is made.

For descriptive purposes the semi-analytic computer code is
broken down into four parts: the initialization process; the short-term
stage, or Stage 1; the intermediate stage, or Stagé 2; and the long-term
stage, or Stage 3.

In the initialization process, I, the principal centroidal inertia
matrix; @y the initial angular velocity vector; h, the internal
angular momentum vector; and the initial values for the angles vy, WH’

and ¢, are entered. From I, W » and h, the total angular momentum

vector, H, are then used to find the initial values of the angles
6 and 4. The initial gravity-gradient torque is also calculated to find

the initial values for Stage 1.




®

The six equations of motion for the Stage 1 integration are those

for: ¢; ¥; V¥ P

'Y the momentum conjugate to {, where P, = H; P the

1 ¢’

the momentum conjugate

‘P’

momentum conjugate to ¢, where P¢ = b; and PW .
H

y - H cosOy . The expressions for $, &, @H’ i

H

éﬂ can be found in the previous section. The nutation period is

to WH’ where P s ﬁ, and
determined either by using an analytical solution, as in the first
example, or numerically, as in the second example. The six equations of
motion are then integrated over one nutation period to find average
values of P P P

S S TS

for the "averaged equations of motion” for Stage 2. This completes the

and ¢y, which are to be used as initial conditions

short-term stage, or Stage 1.
The intermediate stage, or Stage 2, uses these "averaged equations

of motion.” These four averaged equations of motion are integrated

numerically, over an orbital period. The integration step size is much
larger (two orders of magnitude) than the step size used in Stage 1.

The results are doubly averaged values of P, and by which are used then

Yy
averaged again over the orbital period to obtain as the initial values

for the "doubley averaged equations of motion” for §W and $H'
H

In the final stage, or Stage 3, the two doubly averaged equations
of motion are integrated over a specified "long" period of time using
integration step sizes on the order of one-half day.
Exsmple 1
Data for the first example is given in Table 7. Using the
analytical solution, a nutation period of 4.6 seconds was obtained and
the mean time rates of change of ¢ and |y were found to be approximately ’

1.367 rad/sec and 2.132 rad/sec, respectively. Plots of ¢, 6, and ¢ are
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shown in Figure 26 for the Stage 1 portion of the semi-analytical
solution process. The mean value of 9 during the short-term motion is
approximately 6.267 deg. For Stage 2, the numerically determined motion

in E, §W ,» and EH is shown in Figure 27. Results for Stage 3, or
H
long-term motion is shown in Fig. 28 in the form of a 6H VS . @H plot.

The analytical solution to the averaged equations yields the same

information.

Table 7. Data for Semi-Analytic Example 1 _

A = B = 400 kg-m? ¥(0) =0

C = 200 kg-m?2 ¥4(0) =0

hy = 20 kg~m?/s Op(0) = 80 deg

hy = 0 R = 6778.27 km

h, = 150 kg-m2/s e =0
wx(0) = 0.1 rad/s i = 28.5 deg
wy(0) = 0.001 rad/s Q = -6 deg/day
wz(0) = 3.5 rad/s n = 3.998 deg/min

As a partial check on the accuracy of the semi-analytical theory,
the full equations of motion were integrated numerically using a step
size of 0.2 seconds. Results using a fourth-order Runge~Kutta algorithm
on a Harris 800 minicomputer over 29,164 seconds of CPU time are
compared with the semi-analytical results in Fig. 29. The small initial
difference in WH and WH is due to using the average value from Stage 2

of the semi-analytical approach. The CPU time for the application of

the semi-analytic theory is around 12 seconds. Clearly, good accuracy



119

To
-
o -y
©
oy Ll
o S
53:; 253‘
ta =
b
2 =
z,- 23
S &
| S
<
== o
3“"' [+ W=
- 5
3
% X 3 ¥ Z9 .5 3
TIME (SEC) TIME (SEC)
(a) (b)
E
-
=8
[L]
tad
e
-3
62
-
(724
(2]
g
(&)
td
&
% 1.8 3
TIME (SEC)
(c)
Fig. 26. Semi~Analytic Example 1, Short-Term Motion, Stage 1.

Time-Histories (a) Nutation Angle; (b) Angle of Proper
Rotation; (c) Precession Angle.




120

o)
Ll
@a
s T
' i
o 3
g =
0> o \\\\\.////’Q\\\\_////ﬂ
=3 >
-y -]
~
N % n__ & %
TIME (SEC) »102 TIME (SEC) 10
(a) ()
0
Ld
S
“" \
Ey
T
ﬂ;

20 40 e
TIME (SEC) ¢10*
(c)

Fig. 27. Semi-Analytic Example 1, Intermediate Motion, Stage 2.

(a) ¥ (b) FWH; (c) ¥y



121

Fig. 28. Semi-Analytic Example 1, Long-Term Motion, Stage 3.

@H VS TH




Fig. 29.
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can be maintained with tremendous savings of computer time using the
semi-analytic theory.

As a second example, long—term attitude motion of the CRRES
satellite was simulated using the semi-analytic method. The data for
this simulation is presented in Table 8. Using a numerical solution, a
nutation period of 3.9 seconds was determined. Plots of ¢, 6, and ¢ are
shown in Fig. 30 for the Stage 1 portion of the semi-analytic process.
The mean value of 6 during the short-term motion is approximately 4.58

degrees. For Stage 2, the numerically determined motion in E, P , and

n

and ;H is shown in Fig. 31. Results from Stage 3, for long-term motion,

are shown in Fig. 32 in the form of a SH vs ¥ plot.

H

Tablg_B. Data for Semi—Anglgtic Example 2 (CRRES)

A = 2263.13 kg-m? ¥(0) =0
B = 1917.5 kg-m? yg(0) =0
C = 3719.65 kg-m? o(0) = 5 deg
hy = O. R = 7378.27 km
hy = 0. e =0
h, = 0. i = 28.5 deg
we(0) = 0.15 rad/s Q = -6 deg/day
wy(0) = 0. n = 3.4246 deg/min

£
N
—~
o
~
|

= 1.0472 rad/s
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Fig. 32. Semi-Analytic Example 2 (CRRES), Long-Term Motion,

Stage 3. OH VS WH .
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The CPU time required for the second example was 9.22 seconds. The
integration time step size was 0.1 sec for Stage 1, 20 sec for Stage 2
and 1.2 day for Stage 3.

A semi-analytic method for predicting the long-~term attitude motion
of uncontrolled satellites has been described. The method can be used
effectively when the square of the rotational angular momentum of the
satellite under consideration is much larger than the maximum magnitude
of the torque multiplied by the largest moment of inertia of the
satellite. The method is applicable in both cases in which the
unperturbed solution is known and in cases for which it must be
determined numerically. The problem of determining the attitude motion
of a satellite with constant internal angular momentum and subjected to
gravity~gradient torque was used in the first example. The problem of
determining the attitude motion of a satellite which has no internal
angular momentum, but is spinning quite rapidly and is subjected to
gravity-gradient torque was considered in the second example. The speed
with which solutions can be obtained using the method, relative to that
of straightforward numerical integration is of the order of 2430 to 1.

Such time savings are of considerable significance.




VIII. CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

Much of the emphasis of this investigation has been placed on
analytical solutions for the attitude motion of uncontrolled satellites.
Analytical solutions to the torque-free equations of rotational motion
for three satellite models were verified using numerical integration.
The majority of this verification w;s done using a digital simulation
code which contains a rather general dynamic model of a two=-body
satellite. The applicability of one of the torque-free analytical
solutions for the attitude motion of satellites with asymmetric internal
angular momentum was tested using a model for the gravity-gradient
torque. It was determined that for high angular momentum cases the
fidelity of the torque-free analytical solution was very good. However,
for cases in which the satellite is modeled as slowly tumbling in the
presence of environmental torques, the torque-free analytical solution
does not accurately model the motion. Numerical results were obtained
using physical characteristics of actual satellites for cases of low
angular momentum in the presence of environmental torques.

The investigation of long-term attitude motion emphasized the
semi-analytic method. Good results with a substantial savings in CPU
time were obtained using this method. It can be utilized in cases where
the unperturbed analytical solution is known, and also those in which
the unperturbed solution must be determined numerically.
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8.2 Recommendations

It is recommended that for short—term modeling of satellite
attitude motion, for use in capture and retrieval simulators, the
"driver" for dynamically simple, high angular satellites should be a
"torque-free,"” closed-form analytical solution if available. This
recommendation is based upon the "computational-speed advantage™ of
closed-form, analytical solutions. If, on the other hand, the satellite
in question has such complex dynaﬁics that an analytical solution is not
available and/or is a low angular momentum satellite which is moving in
the presence of significant environmental torques, a perturbed
analytical solution or a numerical solution is required. Numerical
integration of the attitude equations becomes more efficient in the low
angular momentum regime because larger integration step sizes may be
employed at lower angular rates.

No analytical solutions for short-term prediction of the attitude
motion of low angular momentum satellites are included in this report.
It is recommended that such solutions be developed. These solutions
would be very useful in satellite capture and retrieval operations.

The recommendation for long—term prediction of satellite attitude
motion is to use a semi-analytic method. Such a method should provide
results which are sufficiently accurate for the purposes of predicting
the state of the satellite's attitude motion sufficiently far in advance
for capture and retrieval mission planning.

The semi-analytic method presented herein does not address the

problem of internal energy dissipation. Therefore, it is recommended
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that "energy-sink” models be incorporated in the present semi-analytic
method.

Finally, for low earth orbit cases, due account must be taken of
the aerodynamic torque. To do this precisely would require that the
aerodynamics of each target in low earth orbit be modeled. Tt is
therefore recommended that methods be developed to produce quickly
attitude time histories of fairly general satellites perturbed by

aerodynamic torques.
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A.l1 Introduction

Many satellites may be considered to be “"single bodies" which are
fairly rigid. The simplest physical model for such a satellite which
takes into account the possibility of mass asymmetries is an asymmetric,
or "tri-inertial,” rigid body. Although the solution for the torque-—
free rotational motion of such a body is well known!! because it forms
the basis for perturbed motion analyses and, principally, because it
does provide a good approximation to the motion of many satellites over
short time periods, a summary of the solution is included in this

report. This summary closely follows that given in Ref. 27.

A.2 Mathematical Model:

Let the principal, centroidal moments of inertia of the body be A,
B and C where either A>B>C or C>B>A. Let the motion of principal axes
Xp, Yp and zp, be measured with respect to a (fixed) rotational angular
momentum coordinate system which has its zg—axis collinear with H, the
angular momentum of the body about its center of mass C. Let the
principal axes components of w, the angular velocity of the body, be

wy, wg, and w,. Also, let ¢, 6 and ¢ denote Euler angles such that

w = $ - { sinb

X
Qy = $ cos6 sing + § cosé (A.2.1)
w_ = @ cosf cos¢$ - 8 sing
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Note that the Euler angle sequence used here 1is a 3-2-1 sequence.

The equations of rotational motion for the body are

Aqx + (C—B)wy w, = 0
Ca + (B-A)w w_=0
z X 'y
Also, the angular momentum can be expressed as either
or
H = H(-sin® 91 + cosh sing 92 + cosf cos¢ 93), (A.2.3b)
where bj’ j=1,2,3, are unit vectors attached to the beybzb system.
Equations (A.2.1) have two immediate integrals,
Aw2 + Bl + Cw2 = 2T (A.2.4D)
X y z
and
AZ(%% + BZw}Z' + Czwi = H , (A.2.4Db)

where J 1is the rotational kinetic energy. These integrals may be used

in Eqs. (A.2.1) to obtain?/ the equation,

£2 = A\2(1 - k2 sin2t), (A.2.5)

where the new variable £

sin”! (0 /Q),Q = (d/e)1/2, a4 =2 ¢T -2,
e = B(C-B), A% = [(C-B)(HZ2 - 2 A )]/(ABC) and
k2 = [(B-A)(2CT -H2)]/[(C-B)(HZ - 2 AT)].

It follows from Eq. (A.2.5) that

sinf = sn u (A.2.6)
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where sn u is one of the Jacobian elliptic functions, u = At - v, and
v is the value of u at t=0. Hence,
W =Qsnu . (A.2.7)
For C>B>A, the integrals (A.2.4) amd (A.2.5) and Eq. (A.2.7)

may be used to get

w, = Pcnu (A.2.8)
and
w =Rdn u , (A.2.9)

z
where P2 = (2¢ 5 - H2)/[A(C-A)], RZ = (H2Z - 2AF)/[C(C-A)] and cn u and
dn u are Jacobian elliptic functions.

By using Eqs. (A.2.3) and defining p = AP/H, q = BQ/H and
r = CR/H, the following relationships may be obtained from Eqs. (A.2.7)
through (A.2.9):

-sinG = p cn u ,

L}

cosf sing = q sn u (A.2.10)

and

]

cosf cosd r dn u .
The angle of precession can be obtained from

y = H{l + [(C-B)/B] sin24}/C , ' (A.2.11)

which is derivable from Eqs. (A.2.1) and (A.2.2). By using
tand = (B/C)(q/r)(sn u/dn u) in Eq. (A.2.11), it is found that

t
v =y, + [ (H/C)[1 + g2 sn? u/(L + o2 sn?u)]dt , (A.2.12)
tO
where

g2 = o2 (C~A)/A
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and
02 = [A(C-B)]/[C(B-A)] k2 .
The integral in (A.2.12) is a form of elliptic integrals of the

third kind and may be evaluated using methods described in Ref. 28.
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B.l Introduction

A "dual-spin” satellite is usually a satellite which is composed of

a nonrotating, or "despun,” “"platform” and a rapidly rotating “"rotor.”
More generally, a dual-spin satellite is one which has two parts which
spin at different rates. The latter description is used for the

purposes of this appendix. Additional requirements on the model of a

dual-spin satellite adopted here are explained in the following. !

A solution to the equations of torque-free attitude motion of a

particular dual-spin satellite physical model is given in this appendix.

It is taken from Ref. 13. The physical model consists of a rigid,

axisymmetric body and a rigid asymmetric body (see Fig. 3). Either can

represent the platform (rotor). The axisymmetric body rotates with ‘
respect to the asymmetric body about its axis of symmetry which is

parallel to one of the axes of extremal moment of inertia of the asym-

metric body. For the solution given, the torque between the rotor and

platform is assumed to be zero. However, the form of the solution is

the same if the relative spin rate of the rotor is constant.

B.2 Equations of Motion

Let A*, B and C represent the principal, centroidal moments of
inertia of the satellite about the xp—, yp~ and zp—axes, respectively,
which are fixed in the asymmetric body. Also, let B; denote the moment
of inertia of the axisymmetric body about its symmetry axis, which is

assumed to be parallel to the xp—axis. Furthermore, let A = A* - Bj,

The components of the rotational angular momentum are

wa + Pa (B.2.1a) .

H =B ' B.2.1b
y W, ( )

H
X
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and

H, = Cu, , (B.2.1c)

where wy, wy and w, are the components of angular velocity of the

asymmetric body and

Pa = Bl(wx + Q) (B.2.2)

is the angular momentum of the axisymmetric body about its symmetry
axis.

In Eq. (B.2.2), Q is the x~axls component of the angular velocity
of the axisymmetric body with respect to the other body.

Because the motion is torque-free, the angular momentum system
Cxyyyzy (see Fig. B.l) is fixed and the Euler angles y, 6 and ¢ are

defined so that

Hy = H cos6 , (B.2.3a)

Hy = H sin® sing (B.2.3b)
and

H, = H sin6 cos¢ , (B.2.3c)

where H = (Hy? + Hy2 + HZZ)I/Z. Note that in this appendix and Appendix

C, the xpy-axis is aligned with H and the Euler angle sequence is 1-2-1.
The equations of motion and the kinematic equations for ¢ and a,

the angle of relative rotation of the axisymmetric body, are

ﬁx = [(B—C)/(BC)]HyHZ s (B.2.4a)
ﬁy = - {[(A—C)/(AC)]HX + Pa/A}Hz , (B.2.4Db)
i = {[(A—B)/(AB)]HX + PQ/A}HY s (B.2.4c)
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Fig. B.1 Angulaf Momentum and Body-Fixed Coordinate Systems for ‘
Appendices B and C.
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ﬁa =0 (B.2.4d)
and

V= u(uyZ/B + HZZ/C)(HZ-HXZ) (B.2.4e)

& = P_(A+B,)/(AB,) - H /A . (B.2.4F)

B.3 Solutions for ¢, 6, ¢ and a

Equations (B.2.4) have the "immediate"” integrals!3

H2 = sz + Hy2 + sz, constant , (B.3.1)

Pa = constant (B.3.2)
and

2T = (Hx-Pa)Z/A + HyZ/B + HZZ/C, constant. (B.3.3)

These three integrals may be used to write

[]

£)(H) = B 2/{(B(A-0)}/[A(B-O)]} = [H, + C P /(A-C)]?

[o}

+ Hyz [A(B-C)]/[B(A-C)] - [H, +C Pa/(A-C)]Z (B.3.4a)

(o]
and
£4(H,) = H,2/{[C(A-B)]/[A(B-C)]} = [H _+ B P_/(A-B)]Z
+ sz [A(B-C)[/[C(A-B)] = [H + B Pa/(A-B)]Z, (B.3.4b)

o o

where a subscript o denotes an initial value.

Hence, Hy and H, are functions of Hy, and ﬁxz may be written in the

form,

8 2 = [(A-C)(A-B)/(ABC)]E,(H )Eq(H ) - (B.3.5)
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The solution to Eq. (B.3.5) depeﬁds upon whether the roots of the
equations fgp = 0 and f3 = 0 are real or complex. For physically
realizable motion, the roots of f2 = 0 must be real. The roots of
f3 = 0 may, however, be either real or complex. Hence, two cases are
possible.
Case 1. Four Real Roots, a>b>c>d

In this case,

H o= (D1 + D, snzu)/(D3 + D, snZu), (B.3.6)

where sn u is a Jacobian elliptic function of modulus

k = {[(a=b)(c-d)1/[(a=c)(b=d)]}1/2 (B.3.7)
and argument,

u = At - ug , (B.3.8)
in which

A = {[(a-B)(A-C)/(BC)] /2 [(amc) (b-a) 1 2 }/2a . (8.3.9)

The forms of the Dj, j=1,2,3,4, depend upon Hy . It turns out that
o
Hy 1is never between b and ¢ for real motion. For b { Hy < a,
o - o T

Dy = a(b-d), Dy = d(a-b), D3 = b—d and D4y = a-b. For d { Hy < ¢,
o

Dy = d(a-c), Dy = a(c~d), Dj a-c and Dy = c-d.

Case 2. Two Real Roots

Tf only the roots of fj 0 are real, the solution for Hy has the

form,

H =(C¢ +C)cnu)/(Cy +Cf cnuw). (B.3.10)
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Here, cn u is a Jacobian elliptic function of modulus

k = {[(a=b)2 = (a* - B*)2]/(4 a*g*)}1/2,

(B.3.11)

where a and b are the real roots (a>b) and ao* and g* are the real and

imaginary parts, respectively, of the complex root c. In the argument,

u = At + u,,

A = [(A=C)(A-B)/(A2BC)] /2 (axpryl’2 .

The constants Cj, j=1,2,3,4, are defined as Cy, = ag* + ba¥*,

C2 = ba* - ap*, C3 = a* + B* and C4 = a* - g*.

(B.3.12)

Solutions to the equations for y, ¢, and o may be obtained for each

of the two cases above. For Case 1, the solution for y is

2

P = ZO bj { du/(l-ajz sn2u) + Yy
o]

where

b, = (c; + cpc, + c3c6)/x

b, = = cyeq/A
by = cycc/A
c, = H/A 3 c, = [2AT-(H+Pa)2]/(2A)
cy = [2AT-(H—PG)2]/(2A) ; 4,6 = D4/(D4H * D,)
c5 7 = (D3Dy = D D,)/[(DsH * D )(D,H * D,)]
4 = 0
2 =

- (D,H = D,)/(D4H = D)

N
il

= (D H + D,)/(D4H + D))

(B.3.13)

(B.3.14)

(B.3.15)

(B.3.16)
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The integrals which appear in the solution for y are elliptic integrals
of the third kind (see Ref. 28, pp. 232-237),
For Case 2, the solution for ¢ is
2 u

b= ) dy [ du/l - sz cnou) + Y (B.3.17)

j=0 u,

where the dj and Bj have the same forms as bj and aj but Cx replaces Dy
in the definitions. Also, the modulus and parameter A have the required
forms. The integrals in Eq. (B.3.17) are also elliptic integrals of the
third kind (see Ref. 28, pp. 215 and 232-237).

The solution for ¢ has the form,

u
P; [ duw/(1 - ajZ sn?u) +d_ 5 (B.3.18)
u

(o}

for case 1. The constants pj are defined as

P, = [Pa/A - cacp + czca]/k R

P; = c3¢y/A (B.3.19)
and

Py = €05/

For Case 2, the solution for ¢ is analogous to the solution for y

in that case.

Solutions for o are similar to those for ¢ and ¢, but are simpler

because only one elliptic integral is involved. For Case 1,

a=a(u-u)+a [ du/(1 - a32 sn?u) , (B.3.20)
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where

[+
i

= [P _(A+B,)/B; - D,/D,]/(A)),

a; = (DyDy - D;D,)/(A DD, A) (B.3.21)
and

a2 = - D, /Dy .

The solution for a for Case 2 can be obtained in the manner described

above for ¢ and ¢.
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C.l1 Introduction

The model presented in Appendix B cannot be used to represent a
satellite which contains a part (or parts) which is rotating about an
axis which is not parallel to a principal axis of the carrier body. A
model which can be used to represent such a satellite, if the system is
axisymmetric, is presented in this appendix. 1In fact, the satellite
model can be used to represent a satellite which contains several
constant-speed, rigid "rotors.” Hence, the label, "Multi-Rotor
Satellite.”

The physical model is depicted in Fig. 4. It consists of a
torque~free carrier body and one, or more, constant-speed, axisymmetric,
rigid rotors. These rotors are arranged so that their resultant angular
momentum due to rotation relative to the carrier body (internal angular

momentum) is not parallel to any axis, except possibly the yp-axis of

the system Cxpypzp fixed in the carrier body. The xp—axis of the system
is an axis of symmetry. Hence, the yp—axis can always be chosen such
that the zp—-component of the internal angular momentum is zero. The

angular momentum system Cxyygzy is fixed because there are no external

torques.

Equations of Motion

The mathematical model presented here is based, for the most part,
on Ref. l4. Let Hg, Hy and H, denote the xy-, yp—and zp—components,
respectively, of the total angular momentum about C. Also, let hy and
hy denote the xp—and yp-components, respectively, of the intermal

angular momentum and let A and C be the principal centroidal moments of
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inertia of the system of carrier body and rotors, with A about the

xp-axis. Then, the equations of rotational motion may be put into the

forms, %
ﬁx = thy/c , (C.2.1a)
ﬁy = ~{[(A-C)/(AC)JH_ + h_/A}H_ (C.2.1b)
and
f, = {[(A=C)/(AC)]H, + b /AJH - Hh /C . (C.2.1c)

The corresponding kinematic equations are

¢ = (H - h )/A - (H/C)[1 - hyHy/(Hz—sz)] (C.2.2a)

and

v = (H/O)[1 - hyHy/(HZ—HXZ)] . (C.2.2b)
Here, ¢ and § are the angle of proper rotation and the precession angle
of the body, respectively (see Fig. B.l in previous appendix).
The nutation angle 6 is given by
6 = cos™l (Hy/H) , (C.2.3)
where H = (H,2 + Hy? + ,2) 2.

The following expressions for the angular velocity components

Wxs Wy, and w, may also be required at times:

w = (H.-h)/A (C.2.4a)
wy = (Hy- hy)/C (C.2.4b)
w, = HZ/C (C.2.4¢c)

Furthermore, the angles 8, ¢ and y can be used to write

o=
0

H cos® (C-Z.Sa)

(==
n

H sin® sin¢ : (C.2.5b)
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and

H = H sin® cosé , (C.2.5¢)

Equations (C.2.1) admit from "first” and "second” integrals
H = constant and

- 2 - 2 2 = .
(Hx hx) /A + (Hy hy) /C + Hz /C = 2T, constant (C.2.6)

Equation (C.2.6) may be rewritten (by using HeH = constant) in the form,

H =aH 2 + 2bH_+ c, (C.2.7)
y X b ¢
where
a = (C-A)/(ZAhy) , (C.2.8a)
and
c = [(C/A)hx2 + hy2 + HZ - 2CT]/(2hy). (C.2.8¢c)

Equation (C.2.7) represents a family of parabolic cylinders in angular
momentum space. The terminus of the vector H describes, on the sphere
H?2 = Hg? + Hy2 + H,2, a curve which is an intersection of a parabolic
cylinder with the sphere.

These integrals may be used in Eq. (C.2.la) to get the equation

2 = 2y 2
ﬁx (hy/C) H2(H) , (C.2.9)
where
2 = g2[=H 4 3 2
Hz (Hx) a<] Hx + cq Hx +'c2 HX + ¢y Hx co] (C.2.10)
cy = - 4 th/(A—C) (C.2.11a)

[¢]
it

- L(A2h 2 2h 2Y/(A=C)2
) 4(A h 2 + C2h Y/ (A=C)

+ 2[Chx2 + AhyZ + A(H2 - 2CT)]/(A-C) (C.2.11b)
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4[02hx3 + AChxhy2 + AChx(Hz - 2CT)]/(A-C)?2 (C.2.11¢)

(¢}
L}

A2{ahy2H2 - [(c/M)h 2 + hyz + H2 - 2CT]2}/(A-C)2.
(C.2.114)

C.3 Solutions for 6, ¢ and ¢

The general solution to Eq. (C.2.9) can be expressed in terms of
elliptic functions of the time. The form of the solution depends on the

number of real roots of the quartic equation, sz(Hx) = 0.

Case 1. Four Real Roots
In this case, if the roots are Hy , j=1,2,3,4, and ij < ka for
J
k>j, then

H = (D; +D, sn2u)/(n3 +D, sn?u) , (c.3.1)

where sn u is Jacobi's sine amplitude function and the Dj are determined

by Hy , the initial value of Hy.

IfH >H > Hx , then

1 o 2

D, =H_ (i ~H_); D, =H ~-H (C.3.2)
1 XXy X, * 73 X, X,

D2 = HXA(H ) - sz); D4 = Hxl - Hx2

If Hy > Hy > Hy , then
2~ %o 3

D) =H (H -H ) Dy=H -H

1 2 X 3 3 (C.3.3)
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Finally, if H. > H_ > H_ , then
X X b

3 o 4
D, =H (4 -H ); D, =H -H
1 X, 1 x3 > 73 Xy x3
(C.3.4)
D, =H (H -H ); D, =H_ =-H .
2 X Xq X, 4 Xq X,
The argument of the elliptic functions is
u = At + Uo ’ (C03-5)
where
2 = - - .
A [ahy/(ZC)][(HX HX )(Hx er)] (C.3.6)
2 4 1 3
k2 = {[(H, -H_ )@H_ -H_)]/[(H_ -H )YH -H )]},
X X X X, Xy Xg X, X,

1 2 X3
(C.3.7)

By using the solution for Hy in Eq. (C.2.2a), and considerable
algebraic manipulation, one may put the equation for ¢ into the form,
3 u
¢ = ) P, [ du/(1 - oy sn?u) , (C.3.8)
= u

o J
o]

where ap = 0,

o = =(D,/D3)dg/d,

a, = =(D,/Dy)dg/d,

a3? = =D, /Dy

P, = [(dy, + d,dg)d; - dgdgd, + d;3D,/D,1/A (C.3.9)
Py = dgdy /A

P, = dadlo/x

P

3 = [d13(D1D4 - ])21)3)/(D3D4)]/X e
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In writing Eqs. (C.3.7), use was made of the defined constants ,

), = D,(DsH + D;)/[Dy(D,H + D,)]

d, = D,(D3H - Dl)/[D3(D4H = Dy)]

d, = H(1 + ahy)/C

d;, = -h (al? - 2bH + ¢)/(2C)

de = —hy(aH2 + 2bH + ¢)/(2C)

de = D,/(D,H + D,)

d, = D6/(D4H -D,) (C.3.10)
d8 = D3/(D3H + Dl)

dg = D3/(D3H - D)

dyg = (D3D, - D4D1)/[(D4H + D,)(DgH + D,)]

dll = (D3D2 - DZ;DI)/[(DZiH - Dz)(D3H - Dl)]

[= 9
0

—(hx/A + 2bhy/C)

=1/A - (1 + ahy)/C .

The integrals in Eq. (C.3.18) are elliptic integrals of the third
kind. A set of subroutines has been developed to evaluate these.

By using a similar procedure, it may be shown that

3 u du
b= .z Qj f 1 - o, snZu + lpo ’ (C.3.11)
j=0 u 1
o
where
Q, = (dg + d,d, + dgd;)/A

o
’—l
]

-2, (C.3.12)
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and

W =P

Case 2. Two Real Roots

When the quartic equation has two real roots, H > H, , and two
X X,

complex roots, y * §i, the solution for Hy has the form,

H = (C1 + 02 cn u)/(C3 + C, cn u),

where, if,

r= [(H - y)2+ §2]172
X
1
and
s = [(H, - 1)2+ 62172,
2
then
C, =H s+H r ’
1 Xl x2
C2=H r -H s ’
X X
1
C3 =r+s
and
c, =

4 r — S

The modulus of c¢n u is given by

k = {[(Hxl - sz)z - (r - s)2]/(4rs)}1/2

As in Case 1, u has the form,

u = At + ugy .

But, for this case,

A= ahy[rs]l/z/C.'

(C.3.13)

(C.3.14a)

(C.3.14b)

(C.3.15a)

(C.3.15b)

(C.3.15¢)

(C.3.15d)

(C.3.16)

(C.3.17)

(C.3.18)
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Regarding the forms of the solutions for ¢ and y, the only way in
which this case differs from Case 1 is that the Cj are used in place of
the Dj and the elliptic function cn u replaces sn?u. The elliptic
integrals are still of the third kind (see Ref. 28, pp. 215, 232-237).
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D.1l Gravity-Gradient Torque Mathematical Models

Two mathematical models were derived during this investigation to
model the gravity-gradient torque experienced by a satellite orbiting
the earth. The first model was used for the short~term gumerical
simulation program. The second was used for the long-term semi-analytic
simulation program.

Short-Term Mathematical Model

The unit vector ég describes the attitude relationship betweeQ fﬂ;f
satellite's body-fixed axes and the zy—axis of the local vertical
system. Recall that the zy~axis always points toward the center of the

earth. Thus, the third column of the L, ~transformation matrix provides

the unit vector of interest in the matrix form,
e = - L 0 . (Dolol)

This expression for gg may then be used to complete the expression,

w

g .
=——¢&

(D.1.2)

where pg is the gravitational constant of the earth, R is the distance
from the center of the earth to the center of mass of the satellite and
I is the matrix of the satellite.
Long~Term Mathematical Model
The model of the perturbing effects of gravity-gradient torque on
the satellite attitude motion used in the semi-analytic simulation is
based on a rigid axisymmetric body with centroidal moments of inertia

A=B#C. The components of the gravity-gradient torque can be derived by




®

taking partial derivatives of the expression for gravity-gradient

potential,

v, = [3uE/(2R3)](C-A) cos?y, (D.1.3)

where the angle y is the angle between the position vector of the
satellite's center of mass and the body-fixed zp-axis (the axis of
symmetry). In terms of the angles 6, Oy, y, and u = ¥y - u, which are

defined in the body of the report, the cos?y may be expressed as

follows:
cosly = %-[1 + c26H + c2¢ - 3c29H c26]
+ 1 [1 - c26, - 3c28, c26] cos 2y
3 H H
1"'. | 2 29 = &2 2
+ Z'[ 1 +e¢ eH + c%0 - ¢ eH c<0] cos 2y

-% [(1 + 2c0, +c20,) 520] cos 2(}-p)

+%. [(1 + 2c8,) s26] cos 2(y+u)

+ [88,c0,, SO cO] cos Y
H™"H

+ %-[(1 - ceH)seH c6 s0] cos (y-2u)
- % [(1 + co,)s0, co s6] cos (y+2u)- (D.1.4)

D.2 Aerodynamic Torque Mathematical Model

The results of the derivation of the aerodynamic torques on the
right-circular cylinder are as follows. The total aerodynamic torque

. acting on the right circular cylinder is a sum of the torques
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1, Iaz, and Ea3 contributed by the surfaces Sl’ SZ’ and S3,
respectively (as shown in Fig. 11). That is

-a

=T 4T 4T (D.2.1)

T = (T T T )T (D.2.2)
! . R A
X y z
where
=T 4 - -
Tal g P Sq T, [2Up - Wr - Vq],
X
= - 4 2 2 -
Tal TP Cy T, U[(rc + 2x1 )q 2Wx1],
y
and
=T 4 2 2 2.
Tal TP ¢4 T, U[(rc + 2x1 ) r + 2Vx1] (D.2.3)

where r, is the radius of the right circular cylinder, U, V, W are the
Xp~, Yp~, and zp-components of the "relative wind," where

U= |V.| cosacosp , V = |Yc[ sing_, and W = |V | sino, cosg , and p, q,
and r are the components of angular velocity about Xp~s Yp—» and
zp—axes, respectively, and x; is the distance from the centroid of the
cylinder to center of the front end cap along thé xp—axis. The
aerclynamic torque contributed by the sides of the cylinder, surface

59, is

= (T T T. )T (D.2.4)
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where

T = -0y rc3 L Y(VZ+W?2) ,

= - L s - 2 - 42
T =-3p¢ rc{W[Z Ur, L Y (VZHZ) (4, d, )]

p[% \ rc(dlz—dzz)] + q[%(/(v2+w2)

w2
Y (VZ+WZ)

+

2 3 3
)(rC L+d1 +d2)

2 VW

- XU r (d,2-d4.2)] - r[
I c' 1 2 3/_7_2_(V+W)

2
(rc L
+ d13+d23)]},

and

H

1]

I
o] =

p cy r {VIVIVZHZ) (d4,2-d,2) - 30 r_ L]

2 VW
- plp W r (d,2-d,2)] —q[f ———— (r 2 L + d,3+d,3)]
2
+ r[%( VIFWZY + ——t (r2 L + d;3 + d23)
yOVZwizy ¢
-z Ur, (4,2-4,2)]} . (D.2.5)

Here, L is the length of the cylinder, dj is the distance along the
Xp—axis between the front endcap and the center of gravity, and dg is
the distance from the rear endcap to the center of gravity. Finally,

' the aerodynamic torque contributed by the rear endcap, S3, is



T =(T T T )T (D.2.6)
a, a, a, a,
X y z
where
=T Y - -
Ta3 g P Cy T, [2Up - Vq - Wr],
X
= 2 2 2
Ta3 7 P Sy T U[2Wx2 + (rc + 2x2 )ql,
y
and
= - l 2 - 2 2 . sloe
Ta3 7 PS4 T U[2Vx2 (rc + 2x2 )r] (D.2.7)

Here, xp is the distance from the center of the rear endcap to the

centroid of the cylinder.




